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Control of the living cell functions with remarkable reliability despite the stochastic nature of the underlying
molecular networks—a property presumably optimized by biological evolution. We ask here to what extent the
ability of a stochastic dynamical network to produce reliable dynamics is an evolvable trait. Using an evolu-
tionary algorithm based on a deterministic selection criterion for the reliability of dynamical attractors, we
evolve networks of noisy discrete threshold nodes. We find that, starting from any random network, reliability
of the attractor landscape can often be achieved with only a few small changes to the network structure.
Further, the evolvability of networks toward reliable dynamics while retaining their function is investigated and
a high success rate is found.
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Processes in living cells are largely controlled by complex
networks of molecular interactions. A remarkable feature of
these networks is their reliable functioning, despite the sto-
chastic nature of their molecular components �1,2�. There are
several indications that properties of the circuitry influence
reliability of noisy systems �3–6�.

Taking an evolutionary perspective, noise resistance of
biological networks must have emerged from the interplay of
mutation and selection. We study here the question of how
accessible noise-resistant dynamical networks are to evolu-
tion and what the costs are in terms of topological rearrange-
ments in order to achieve a reliable dynamical network. We
study this question in the framework of numerical experi-
ments, evolving discrete dynamical networks in the com-
puter.

Different notions of robustness have been considered in
this framework. It was found that networks can evolve to-
ward realizations that are robust against mutations of the
network structure �7�. Further, robustness of dynamical �ex-
pression� patterns has been studied as a guiding principle of
network evolution �8�. Recent numerical experiments show
that networks can simultaneously be robust against structural
changes �attractors are left unchanged� as well as evolvable
�new attractors emerge� �9�. Finally, network evolution to-
ward robustness against gene state errors in the initial con-
figuration turns out to be an easy and rapid process �10,11�.

In this Rapid Communication, we extend these viewpoints
by studying the evolution of networks toward robustness
against small timing fluctuations or “reliability” �to avoid
confusion with existing definitions of the term “robustness”�.
While gene switching errors �a type of “perturbation” com-
monly used by many authors� are not at all small perturba-
tions and not typical for real cells, small perturbations in
timing and activity levels are ubiquitous in biological sys-
tems. Such small noise levels have recently proven to de-
stroy most attractors in Boolean networks that are observed
under parallel update �12,13�. Obviously, only those attrac-
tors that are stable against such small noise �i.e., “reliable”�
can be relevant in the biological context. Indeed, in the bio-
logical example of the yeast cell cycle network, this type of
stability against timing perturbations is observed �14�.

Here, we investigate whether such reliability of a dynami-
cal network can readily result from an evolutionary proce-

dure, only involving rewiring of the network structure. De-
fining biologically motivated mutation-selection processes,
we will evolve random networks toward realizations that ex-
hibit reliable dynamics. We investigate both the emergence
of entirely stable attractor landscapes as well as the ability of
networks to evolve in such a way that a given attractor is
stabilized.

On a different route, the question of evolving networks
toward performing a specified target function has been inves-
tigated in various works since the first numerical experi-
ments of Kauffman and Smith in 1986 �15�. Boolean net-
works can be evolved to perform specific tasks and several
authors have discussed how such problems are affected by
noise from external sources �16�, modular goals �17�, and
specific degree distributions �18�. In contrast to these mod-
els, we do not evolve toward a specific target function but
instead select networks solely for reliable functioning of
their �existing� dynamics. This follows along the lines of an
earlier network evolution model that selects for robust repro-
duction of individual network dynamics �8,19�. As in �8�, we
choose here a computationally simple subset of all possible
Boolean networks, the so-called threshold networks with a
majority rule in the inputs of each node. Networks of thresh-
old nodes are best known as the prototypical model for neu-
ral networks introduced by McCulloch and Pitts �20�. They
later made a second career as models for genetic networks
�7,8,21,22�. The main dynamical features of Boolean net-
works are represented in threshold networks as well �23,24�
and a close correspondence between the two has been found
in the earlier evolution studies �8,19�. We choose threshold
networks in this study, and expect that using networks with
the full set of Boolean functions would at least match or even
exceed the results reported below �as increasing the number
of possible Boolean functions at each node would increase—
not decrease—the number of options in each evolutionary
step�.

We model genes as nodes in a network where every node
i assumes a state of either �i�t�= +1 �active� or −1 �inactive�.
Interactions between the nodes are directed links Aij with an
assigned weight of either Aij = +1 or −1, corresponding to an
activating or inhibiting interaction, respectively, or Aij =0
where interaction is absent. The update rule is given by
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�i�t + 1� = �+ 1 if �
i=1

n

Aij� j�t� � 0,

− 1 otherwise,

�1�

where nodes are updated in parallel. As the dynamics is de-
terministic in a finite state space, the system always ends up
in an attractor, which can be either a fixed point or a limit
cycle �as, in general, our weight matrix is asymmetric, Aij
�Aji�. The “basin size” of an attractor is defined as the num-
ber of all states that lead to this attractor. We assess the
stability of a network against fluctuations of the signal trans-
mission times using the reliability criterion of �13�, which
provides a deterministic measure for a network under inves-
tigation. It requires two principal assumptions: First, the
nodes implement a low-pass filter that removes the effect of
short-term fluctuations of the activity states. This is justified
by the buildup and decay processes of protein concentrations
�25�. Second, the signal time fluctuations are small compared
to the time scales of the processes and that of the filter. Thus,
a single signal fluctuation does not dramatically perturb the
system, but only the addition of many similar perturbations
over time can drive the system away from an initially syn-
chronous behavior.

To determine the stability of an attractor, first the synchro-
nous state sequence is recorded. Starting from one state of
the limit cycle, we determine all switching events that occur
in the next synchronous step and call the set of switching
nodes M. For every subset S�M we change the switching
times from t=0 to t=�, i.e., we retard the switching times for
these nodes by a small number. Thus, a new intermediate
state from time t=0 to t=� is created, where only some
nodes have already switched. We then follow the dynamics,
with two times for every synchronous time step:

�i� Determine the states at times t= i, i=1,2 , . . . and t�= i
+� from the states at t= i−1 and t�= i−1+�, respectively.

�ii� Apply the filter rule: if a node switches both at integer
and perturbed time, flip the state at integer time, thus effec-
tively removing both switching events. As the activity state
has persisted only for a time span of �, we assume it does not
affect the system further.

�iii� If all nodes switch at either integer or perturbed time,
the system has regained synchrony and the attractor is stable
for this particular subset of perturbed nodes. If, however, the
system reaches a new attractor in the combined state space of
both times, the system is unstable as the perturbation can in
general persist in the system and might diverge, thus leading
to a different attractor or to a “chaotic” regime of incessant
switchings.

We call an attractor “stable” if it is stable against all sub-
set perturbations, otherwise we call it “unstable.” Fixed
points are trivially stable by this definition. We use two dif-
ferent evolutionary selection criteria. In the first part, the
stability of the full attractor landscape is investigated and the
fitness score is given by the sum of the basin sizes of all
stable attractors. In the second part, the fitness score is de-
termined by the stability and basin size of one “functional
attractor” only.

In every step of the evolution, the network is copied and

mutated and its stability assessment is compared with the
mother network. If the fitness of the mutant is higher than
that of the mother network, the mutant is kept and replaces
the original, otherwise a new mutant is tested. This is re-
peated until the requested criterion is maximally fulfilled.

Mutation is performed through a single link rewiring, i.e.,
one connection between two nodes is removed and another
new connection between two nodes is added. This procedure
keeps the average connectivity of the network during evolu-
tion. As our method requires full enumeration of the space of
2N states, where N is the number of nodes, we can only
perform this analysis for small networks. We show the re-
sults for N=16 nodes, but have checked that the conclusions
also hold for networks with N=12 and 20 nodes.

In the first part, let us evolve networks toward stability
regarding the complete attractor landscape. Given a network,
we accept a mutation of it if the mutant has a higher number
of initial states leading to a stable attractor. If so, the network
is replaced by the mutant and the next evolution step is
taken, otherwise a new mutation is tested. This procedure
stops as soon as all initial states lead to stable attractors. In
Fig. 1, we show the average number of evolution steps nec-
essary to reach full stability of the attractor landscape, plot-
ted against the average connectivity, defined by the total
number of edges divided by the number of nodes. Networks
consist of 16 nodes and 1000 repetitions were run for every
data point. One can see that for all connectivities a very
small number of mutations already suffices to find a com-
pletely stable network. Using a more restrictive method of
selection, such as, for example, choosing the fittest out of
several tested mutant networks, further reduces the average
evolution steps significantly �data not shown�. To ensure that
we do not simply observe the effects of networks evolving
toward fixed points �which are always stable�, we have
checked all results also with the rule that a fixed point is
counted as an unstable attractor. We do not show the results
here, but the conclusions drawn above hold also in this case.
The only qualitative difference is that the pronounced drop at
low connectivities of the average number of evolution steps
�Fig. 1� is not present if fixed points are regarded as unstable
attractors. Thus, the two different slopes for �k��3 and �k�
�3 are due to the abundance of fixed points in networks
with low connectivities.
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FIG. 1. Network evolution rapidly leads to stable attractor land-
scapes: average number of evolution steps vs connectivity of the
networks. The networks consist of 16 nodes; each data point corre-
sponds to the average over 1000 runs.
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Next, it is interesting to look at dynamical properties and
how they change during the course of the evolution process.
In Table I, we compare random networks with networks that
have undergone the evolution process for an average connec-
tivity of �k�=3 �results are typical for any value of �k��. One
can see that the average number of attractors has decreased
and that the size of the largest basin has increased at the
same time. Again, these significant effects take place within
very few evolution steps. Thus, we find that the dynamical
landscape of a threshold network can be significantly altered
by only a few mutations of the network topology. Stability of
the attractor landscape can be achieved without significant
changes of the overall network structure.

So far we have not constrained the dynamics in any way,
so the evolved networks might show different dynamical be-
havior from the original networks. If we think of attractors as
a function performed by a genetic network, we should re-
strict evolution to networks that are able to reproduce the
original attractor dynamics.

This leads to a modified selection criterion with the fol-
lowing target: We choose the largest attractor of the original
network as the “functional attractor” and require stabilization
of this attractor. If it is a fixed point or a stable limit cycle,
there is trivially nothing to do in the evolution, so we just
discard these networks and create a new one until we find a
network with an unstable largest attractor. During evolution,
every mutant has to reproduce this attractor. This means that,
starting at one step of the attractor cycle, the dynamics of the
original network and of the mutant have to be exactly the
same. If the mutant does not reproduce the attractor, it is
immediately discarded. We do not request that the networks
reproduce the transient states as this constraint is too strict
and disallows practically every mutation.

The fitness score is given by the basin size of the func-
tional attractor or is 0 if the functional attractor is unstable.
We have employed two different selection criteria: strict or
neutral selection. In the strict selection scheme, a network is
only accepted if it increases the fitness score, whereas in the
neutral selection a larger or equal fitness score suffices. This
means that in the strict scheme, the stabilization has to occur
within a single rewiring, whereas the neutral criterion allows
for a random walk through the space of networks that exhibit
the functional attractor. The evolution process is complete as
soon as the functional attractor is stable with a basin size of
half the total state space, which makes the functional attrac-
tor the dominant dynamical expression pattern. In Fig. 2, we
show the results of the evolution processes using the func-
tional attractor criterion for a network size of N=16 and

1000 attempted evolution runs. The ratio of networks that
can be stabilized in both selection schemes is plotted against
the average connectivity of the networks. For each evolution
step, we have attempted 20 000 mutations before marking a
network as not evolvable toward stability �this simulation
parameter does not influence the results as long as it is suf-
ficiently high�. In the neutral selection, a stable network has
to be found within 106 mutation attempts during the full
evolution run.

First, one can see that even in the single-step evolution
�points marked by +�, more than half of all networks can be
stabilized. For very low connectivities as well as connectivi-
ties above 3, more than 3

4 of all networks fulfill the criterion.
In the case of neutral selection �points marked by ��, this
ratio is even higher. Especially for networks of connectivities
around 1.5, the probability of evolving toward a stable real-
ization is significantly increased. For connectivities above 2,
practically every network can be stabilized using this evolu-
tion process.

There is a dip at connectivities around 1 in the single-step
evolution and around 1.5 in the neutral selection. The reason
for this is that at small connectivities, attractor cycles are

FIG. 3. �Color online� Attractor stabilization can be achieved by
small topological changes. See text for details.

TABLE I. Characteristics of random and evolved networks for
N=16, �k�=3. Averages over 20 000 runs.

Random
networks

Evolved
networks

Number of attractors 3.98�0.02 2.12�0.01

Largest basin size 47 800�100 57 100�100

Fitness score 40 300�200 65 536

No. of evolution steps 2.07�0.02 0
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FIG. 2. Ratio of networks stabilized in the evolution against
average connectivity. N=16, every data point averaged over 1000
evolution runs for neutral mutations ��� and single link rewirings
�+�.
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caused by short loops in the network topology—at very low
connectivities unstable dynamics caused by two nodes influ-
encing each other can often be stabilized by the formation of
a self-loop of one of these nodes. At higher connectivities,
larger dynamical cores emerge, which are, however, still de-
pendent on a small number of links and cannot easily be
stabilized. At even larger connectivities, these dynamical
cores are often formed by dense connections of many links,
some of which are dispensable and can be rewired without
destroying the attractor.

In Fig. 3, we show an example of an evolutionary process
for a network with 12 nodes and �k�=2. The network struc-
ture as well as the full synchronous attractor landscape are
shown, before �top� and after �bottom� a single mutation. In
the attractor landscape figure, each network state is repre-
sented by a dot that is connected to the concurrent state by a
line. The central shape denotes the attractor. All four attrac-
tors of the original network are unstable. After mutation �de-

picted by thick lines�, only two attractors remain. The func-
tional attractor with a cycle length of 4 is now stable. One
can see how the single mutation dramatically affects the at-
tractor landscape of the network.

Three implications of our results are at hand. First, we
find that the topological features of a network do not strictly
dictate the stability of the resulting network dynamics. Small
changes in the rewiring can have dramatic effects on the
attractor landscape, including complete stabilization. Second,
the �synchronous� state sequence of an attractor does not
determine the stability. Even within small topological
changes, it is often possible to find networks that exhibit the
same attractor, but perform it in a reliable way. And third,
neutral mutations ease network evolution and increase the
fraction of networks that can be stabilized.

This work was supported by Deutsche Forschungsge-
meinschaft Grants No. BO1242/5-1 and No. BO1242/5-2.
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